1,891 research outputs found

    Superconductivity and physical properties of LanRu3n-1B2n (n = 1, 2, and 3)

    Full text link
    We examined the physical properties of homologous LanRu3n-1B2n (n = 1 - 3) series including a new compound of n = 2. All of these compounds showed strong electron-electron correlation characterized by large Wilson ratio. In contrast to LaRu2B2 and La2Ru5B4 that show normal metal behaviors down to 1.8 K, we discover La3Ru8B6 is an intermediately coupled BCS superconductor with Tc ~ 3.2 K. The experimental and theoretical calculation results suggest that the emergence of superconductivity in La3Ru8B6 attributes to the rather large density of states at EF when compared to other two compounds.Comment: 6 pages, 6 figures, 3 table

    Potential Profiling of the Nanometer-Scale Charge Depletion Layer in n-ZnO/p-NiO Junction Using Photoemission Spectroscopy

    Full text link
    We have performed a depth-profile analysis of an all-oxide p-n junction diode n-ZnO/p-NiO using photoemission spectroscopy combined with Ar-ion sputtering. Systematic core-level shifts were observed during the gradual removal of the ZnO overlayer, and were interpreted using a simple model based on charge conservation. Spatial profile of the potential around the interface was deduced, including the charge-depletion width of 2.3 nm extending on the ZnO side and the built-in potential of 0.54 eV

    ^{75}As NMR study of the growth of paramagnetic-metal domains due to electron doping near the superconducting phase in LaFeAsO_{1-x}F_{x}

    Get PDF
    We studied the electric and magnetic behavior near the phase boundary between antiferromagnetic (AF) and superconducting (SC) phases for a prototype of high-T_c pnictides LaFeAsO_{1-x}F_{x} by using nuclear magnetic resonance, and found that paramagnetic-metal (PM) domains segregate from AF domains. PM domains grow in size with increasing electron doping level and are accompanied by the onset of superconductivity, and thus application of pressure or increasing the doping level causes superconductivity. The existence of PM domains cannot be explained by the existing paradigm that focuses only on the relationship between superconductivity and antiferromagnetism. Based on orbital fluctuation theory, the existence of PM domains is evidence of the ferroquadrupole state.Comment: 5 figure

    FeAs-based superconductivity: a case study of the effects of transition metal doping on BaFe2As2

    Full text link
    The recently discovered FeAs-based superconductors are a new, promising set of materials for both technological as well as basic research. They offer transition temperatures as high as 55 K as well as essentially isotropic and extremely large upper, superconducting critical fields in excess of 40 T at 20 K. In addition they may well provide insight into exotic superconductivity that extends beyond just FeAs-based superconductivity, perhaps even shedding light on the still perplexing CuO-based high-Tc materials. Whereas superconductivity can be induced in the RFeAsO (R = rare earth) and AEFe2As2 (AE = Ba, Sr, Ca)) families by a number of means, transition metal doping of BaFe2As2, e.g. Ba(Fe1-xTMx)2As2, offers the easiest experimental access to a wide set of materials. In this review we present an overview and summary of the effect of TM doping (TM = Co, Ni, Cu, Pd, and Rh) on BaFe2As2. The resulting phase diagrams reveal the nature of the interaction between the structural, magnetic and superconducting phase transitions in these compounds and delineate a region of phase space that allows for the stabilization of superconductivity.Comment: edited and shortened version is accepted to AR:Condensed Matter Physic
    corecore